
Week 12 - Wednesday



 What did we talk about last time?
 Exam 2

 Before that:
 NP-completeness
 Review











 Running time
 Best case
 Worst case
 Average case

 Stable
 Will elements with the same value get reordered?

 Adaptive
 Will a mostly-sorted list take less time to sort?

 In-place
 Can we perform the sort without additional memory?

 Simplicity of implementation
 Relates to the constant hidden by Big Oh

 Online
 Can sort as values arrive





 Pros:
 Best case running time of O(n)
 Stable
 Adaptive
 In-place
 Simple implementation (one of the fastest sorts for 10 elements or fewer!)
 Online

 Cons:
 Worst case running time of O(n2)



 We do n – 1 rounds
 For round i, assume that the elements 0 through i – 1 are sorted
 Take element i and move it up the list of already sorted elements 

until you find the spot where it fits
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 Pros:
 Best, worst, and average case running time of

O(n log n)
 Stable
 Ideal for linked lists

 Cons:
 Not adaptive
 Not in-place
▪ O(n) additional space needed for an array
▪ O(log n) additional space needed for linked lists



 Take a list of numbers, and divide it in half, then, recursively:
 Merge sort each half
 After each half has been sorted, merge them together in order
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 We implemented merge sort before in a naïve way
 Break the arrays down into smaller arrays
 Recursively sort them
 Merge them back together

 However, creating new arrays is an expensive memory operation
 Creating very large arrays is expensive because they have to be cleared 

out in Java
 Creating lots of small arrays has a lot of overhead

 A standard approach to improve performance is to use one extra 
scratch array that's the same size as the original array

 We won't need to do any other allocation beyond that



public static void mergeSort(double[] values) {
double[] scratch = new double[values.length];
mergeSort(values, scratch, 0, values.length);

}

private static void mergeSort(double[] values, double[] 
scratch, int start, int end) {
…

}

private static void merge(double[] values, double[] 
scratch, int start, int mid, int end) {
…

}



 Everything comes down to picking the right pivot
 If you could get the median every time, it would be great

 A common choice is the first element in the range as the pivot
 Gives O(n2) performance if the list is sorted (or reverse sorted)
 Why?

 Another implementation is to pick a random location
 Another well-studied approach is to pick three random locations 

and take the median of those three
 An algorithm exists that can find the median in linear time, but its 

constant is HUGE



 Quicksort
 Counting sort



 Start on Project 4
 Work on Assignment 6
 Due Friday

 Read Sections 2.1 - 2.3 and 5.1
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