
Week 12 - Wednesday



 What did we talk about last time?
 Exam 2

 Before that:
 NP-completeness
 Review











 Running time
 Best case
 Worst case
 Average case

 Stable
 Will elements with the same value get reordered?

 Adaptive
 Will a mostly-sorted list take less time to sort?

 In-place
 Can we perform the sort without additional memory?

 Simplicity of implementation
 Relates to the constant hidden by Big Oh

 Online
 Can sort as values arrive





 Pros:
 Best case running time of O(n)
 Stable
 Adaptive
 In-place
 Simple implementation (one of the fastest sorts for 10 elements or fewer!)
 Online

 Cons:
 Worst case running time of O(n2)



 We do n – 1 rounds
 For round i, assume that the elements 0 through i – 1 are sorted
 Take element i and move it up the list of already sorted elements 

until you find the spot where it fits



7

45

0

54

37

108

51

7

45

0

54

37

108

51

0

7

45

54

37

108

51

0

7

45

54

37

108

51

0

7

37

45

54

108

51

0

7

37

45

54

108

51

0

7

37

45

51

54

108







 Pros:
 Best, worst, and average case running time of

O(n log n)
 Stable
 Ideal for linked lists

 Cons:
 Not adaptive
 Not in-place
▪ O(n) additional space needed for an array
▪ O(log n) additional space needed for linked lists



 Take a list of numbers, and divide it in half, then, recursively:
 Merge sort each half
 After each half has been sorted, merge them together in order



7

45

0

45

0

0

45

0

7

45

54

37

108

37

108

37

108

37

54

108

7

45

0

54

37

108

0

7

37

45

54

108

7

45

0

54

37

108





 We implemented merge sort before in a naïve way
 Break the arrays down into smaller arrays
 Recursively sort them
 Merge them back together

 However, creating new arrays is an expensive memory operation
 Creating very large arrays is expensive because they have to be cleared 

out in Java
 Creating lots of small arrays has a lot of overhead

 A standard approach to improve performance is to use one extra 
scratch array that's the same size as the original array

 We won't need to do any other allocation beyond that



public static void mergeSort(double[] values) {
double[] scratch = new double[values.length];
mergeSort(values, scratch, 0, values.length);

}

private static void mergeSort(double[] values, double[] 
scratch, int start, int end) {
…

}

private static void merge(double[] values, double[] 
scratch, int start, int mid, int end) {
…

}



 Everything comes down to picking the right pivot
 If you could get the median every time, it would be great

 A common choice is the first element in the range as the pivot
 Gives O(n2) performance if the list is sorted (or reverse sorted)
 Why?

 Another implementation is to pick a random location
 Another well-studied approach is to pick three random locations 

and take the median of those three
 An algorithm exists that can find the median in linear time, but its 

constant is HUGE



 Quicksort
 Counting sort



 Start on Project 4
 Work on Assignment 6
 Due Friday

 Read Sections 2.1 - 2.3 and 5.1


	COMP 2100
	Last time
	Questions?
	Project 4
	Assignment 6
	What do we want from sorting?
	Characteristics of a sort
	Insertion Sort
	Insertion sort
	Insertion sort algorithm
	Insertion sort example
	Insertion Sort Implementation
	Merge Sort
	Merge sort
	Merge sort algorithm
	Merge sort example
	Merge Sort Implementation
	Merge sort revisited
	Merge sort methods
	Quicksort issues
	Next time…
	Reminders

